Abstract

Abstract The emerging field of molecular cavity polaritons has stimulated a surge of experimental and theoretical activities and presents a unique opportunity to develop the many-body simulation methodology. This paper presents a numerical scheme for the extraction of key kinetic information of lossy cavity polaritons based on the transfer tensor method (TTM). Steady state, relaxation timescales, and oscillatory phenomena can all be deduced directly from a set of transfer tensors without the need for long-time simulation. Moreover, we generalize TTM to disordered systems by sampling dynamical maps and achieve fast convergence to disordered-averaged dynamics using a small set of realizations. Together, these techniques provide a toolbox for characterizing the interplay of cavity loss, disorder, and cooperativity in polariton relaxation and allow us to predict unusual dependences on the initial excitation state, photon decay rate, strength of disorder, and the type of cavity models. Thus, using the example of cavity polaritons, we have demonstrated significant potential in the use of the TTM toward both the efficient computation of long-time polariton dynamics and the extraction of crucial kinetic information about polariton relaxation from a small set of short-time trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call