Abstract

<p>The forecast of tropical cyclone (TC) intensity is a significant challenge.  In this study, we showcase the impact of strongly coupled data assimilation with hypothetical ocean currents on analyses and forecasts of Typhoon Hato (2017). </p><p>Several observation simulation system experiments were undertaken with a regional coupled ocean-atmosphere model. We assimilated combinations of (or individually) a hypothetical coastal current HF radar network, a dense array of drifter floats and minimum sea-level pressure. During the assimilation, instant updates of many important atmospheric variables (winds and pressure) are achieved from the assimilation of ocean current observations using the cross-domain error covariance, significantly improving the track and intensity analysis of Typhoon Hato. As compared to a control experiment (with no assimilation), the error of minimum pressure decreased by up to 13 hPa (4 hPa / 57 % on average). The maximum wind speed error decreased by up to 18 knots (5 knots / 41 % on average). </p><p>By contrast, weakly coupled implementations cannot match these reductions (10% on average). Although traditional atmospheric observations were not assimilated, such improvements indicate there is considerable potential in assimilating ocean currents from coastal HF radar, and surface drifters within a strongly coupled framework for intense landfalling TCs.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.