Abstract

Abstract In this study, the extreme gradient boosting (XGBoost) algorithm is used to correct tropical cyclone (TC) intensity in ensemble forecast data from the Typhoon Ensemble Data Assimilation and Prediction System (TEDAPS) at the Shanghai Typhoon Institute (STI), China Meteorological Administration (CMA). Results show that the forecast accuracy of TC intensity may be improved substantially using the XGBoost algorithm, especially when compared with a simple ensemble average of all members in the ensemble forecast [as depicted by the ensemble average (EnsAve) algorithm in this study]. The forecast errors for maximum wind speed (MWS) and minimum sea level pressure (MSLP) have been reduced by a significant margin, ranging from 6.3% to 18.4% for MWS and from 4% to 14.9% for MSLP, respectively. The performance of the XGBoost algorithm is overall better than that of the EnsAve algorithm, although there are a few samples when it is worse. The bias analysis shows that TEDAPS underpredicts the MWS and overpredicts the MSLP, meaning that the TEDAPS underestimates TC intensity. However, the XGBoost algorithm can reduce the bias to improve the forecast accuracy of TC intensity. Specifically, it achieves a reduction of over 20% in forecast errors for both the MWS and MSLP of typhoons compared to the EnsAve algorithm, indicating the XGBoost algorithm’s particular advantage in forecasting intense TCs. These results indicate that the TC intensity forecast can be substantially improved using the XGBoost algorithm, relative to the EnsAve algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.