Abstract
We examine a class of discrete Painlevé equations which present a strong asymmetry. These equations can be written as a system of two equations, the right-hand-sides of which do not have the same functional form. We limit here our investigation to two canonical families of the Quispel-Roberts-Thompson (QRT) classification both of which lead to difference equations. Several new integrable discrete systems are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.