Abstract
A discrete matrix spectral problem and corresponding family of discrete integrable systems are discussed. A semi-direct sum of Lie algebras of four-by-four matrices is introduced, and the related integrable coupling systems of resulting discrete integrable systems are derived. The obtained discrete integrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity. Finally, Liouville integrability of the family of obtained integrable coupling systems is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.