Abstract

Gene clustering is rare in eukaryotes. However, nucleotide-binding leucine-rich repeat (NLR)-encoding disease resistance (R) genes show consistent clustering in plant genomes. These arrangements are likely to provide coregulatory benefits, as suggested by growing evidence that the gene products of both paired and larger clusters of NLRs act together in triggering immunity. Head-to-head gene pairs where one of the encoded NLRs includes an integrated decoy domain appear to behave differently than clusters evolved from closely related typical NLRs. These patterns may help to explain the broad resistance that most plants have despite their finite number of R genes. By taking into consideration the relationship between genomic arrangement and function, we can improve our understanding of and ability to predict plant immune detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.