Abstract
Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotype-by-environment (G×E) interactions can offer insights into the genetic factors that affect performance in specific environments. By leveraging historical breeding data, ML streamlines strategies and automates analyses to reveal genomic patterns. In this review we examine the transformative impact of big data, including multi-trait genomics, phenomics, and environmental covariables, on genomic-enabled prediction in plant breeding. We discuss how big data and ML are revolutionizing the field by enhancing prediction accuracy, deepening our understanding of G×E interactions, and optimizing breeding strategies through the analysis of extensive and diverse datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.