Abstract

The non-forward eikonal scattering matrix for dipole-proton scattering at high energy obtains an imaginary part due to a $C$-odd three gluon exchange. We present numerical estimates for the perturbative Odderon amplitude as a function of dipole size, impact parameter, their relative azimuthal angle, and light-cone momentum cutoff $x$. The proton is approximated as $\psi_\mathrm{qqq}|qqq\rangle + \psi_\mathrm{qqqg}|qqqg\rangle$, where $\psi_\mathrm{qqq}$ is a non-perturbative three quark model wave function while the gluon emission is computed in light-cone perturbation theory. We find that the Odderon amplitude increases as $x$ decreases from 0.1 to 0.01. At yet lower $x$, the reversal of this energy dependence would reflect the onset of universal small-$x$ renormalization group evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.