Abstract

AbstractAmorphous silicon nitrogen alloy (a-Si:Nx) thin films have been deposited using a novel hot filament chemical vapor deposition (HFCVD) technique. In this method, a hot tungsten filament is used to decompose ammonia to obtain highly reactive nitrogen precursor species which further react with disilane to form silicon nitride thin films. This allows for very high deposition rates ranging from 600 Å/min to 2500 Å/min at low substrate temperatures. These films deposited at high rates show strong photoluminescence (PL) at room temperature in the visible region when excited with the 457 nm line of Ar+ ion laser. Intrinsic defects introduced into the amorphous silicon nitride matrix due to the rapid deposition rates seem to give rise to the visible PL. The PL intensity is at least 8-10 times stronger than silicon nitride films deposited by conventional plasma enhanced CVD. PL peak position of this broad luminescence was varied in the visible region by changing the film stoichiometry (Si/N ratio). The PL peak energy also scales predictably with the refractive index and optical band gap of the films. These samples showed reversible PL fatigue and also have band edge tail states characteristic of amorphous materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call