Abstract
The effect of Joule heating on graphene electronic properties is investigated by self-consistent use of full-band Monte Carlo electron dynamics and three-dimensional heat transfer simulations. Several technologically important substrate materials are examined: SiO2, SiC, hexagonal BN, and diamond. Results illustrate that the choice of substrate has a major impact via heat conduction and surface polar phonon scattering. Particularly, the poor thermal conductivity of SiO2 leads to significant Joule heating and saturation velocity degradation in graphene characterized by the 1/n decay. Considering the overall characteristics, BN appears to compare favorably against the other substrate choices for graphene electronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.