Abstract

Traveling-wave optomechanical interactions, known as Brillouin interactions, have now been established as a powerful and versatile resource for photonic sources, sensors, and radio-frequency processors. However, established Brillouin-based interactions with sufficient interaction strengths involve short phonon lifetimes, which critically limit their performance for applications, including radio-frequency filtering and optomechanical storage devices. Here, we investigate a new paradigm of optomechanical interactions with tightly confined fundamental acoustic modes, which enables the unique and desirable combination of high optomechanical coupling, long phonon lifetimes, tunable phonon frequencies, and single-sideband amplification. Using sensitive four-wave mixing spectroscopy controlling for noise and spatial mode coupling, optomechanical interactions with long > --> 2 µ s phonon lifetimes and strong > --> 400 W − 1 m − 1 coupling are observed in a tapered fiber. In addition, we demonstrate novel phonon self-interference effects resulting from the unique combination of an axially varying device geometry with long phonon lifetimes. A generalized theoretical model, in excellent agreement with experiments, is developed with broad applicability to inhomogeneous optomechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.