Abstract

In this paper, strong longitudinal coupling of the Tamm plasmon polaritons (TPPs) is investigated in a graphene/DBR/Ag slab hybrid system. It is found that TPPs can be excited at both the top graphene and the bottom silver slab interface, which can strongly interact with each other in this coupled structure. Numerical simulation results demonstrate that the vertical Tamm plasmon coupling can be either tuned by adjusting the geometric parameters or actively controlled by the Fermi energy in graphene sheet as well as the incident angle of light, allowing for strong light-matter interaction with a tunable dual-band perfect absorption. Moreover, the coupling strength of the hybrid modes exhibits a large tuning range, from a large Rabi splitting to an extremely narrow induced transparency in this coupled regime. Coupled mode theory has been employed to explain the strong coupling phenomenon. The controllable TPP coupling with an ultrahigh dual-band absorption capability offered by this simple layered structure opens new avenues for developing a broad range of graphene-based active optoelectronic and polaritonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.