Abstract

In this work, we theoretically investigate the strong coupling of Tamm Plasmon Polaritons (TPP) in a graphene/DBR/Ag hybrid structure. It is found that TPP can be generated at both upper graphene and lower Ag interfaces, which can strongly couple with each other, allowing strong light-matter interaction with dual-band perfect absorption. Numerical results reveal that resonance frequency of hybrid modes can be tuned by adjusting geometry parameters or dynamically modifying graphene Fermi energy. Coupling strength for the TPP hybrid modes exhibits a large tuning range, from large Rabi splitting to a very narrow induced transparency. The tunable TPP strong coupling with a dual-band perfect absorption in this simple layered system is potential in developing a broad range of graphene-based optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call