Abstract

Strong isospin breaking in the spectrum of the nucleons and deltas can be studied in lattice QCD with the help of chiral perturbation theory. At leading order in the chiral expansion, the mass splittings between the proton and neutron and between the deltas are linear in the quark mass difference. The next-to-leading order contributions to these splittings vanish even away from the strong-isospin limit. Therefore, any non-linear quark mass dependence of these mass splittings is a signal of the next-to-next-to-leading order mass contributions, thus providing access to low energy constants at this order. We determine the mass splittings of the nucleons and deltas in two-flavor, heavy baryon chiral perturbation theory to next-to-next-to-leading order. We also derive expressions for the nucleon and delta masses in partially quenched chiral perturbation theory to the same order. The resulting mass expressions will be useful both for the extrapolation of lattice data on baryon masses, and for the study of strong isospin breaking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.