Abstract
Platinum (Pt) supported on high surface area carbon has been the most widely used electrocatalyst in proton exchange membrane fuel cell (PEMFC). However, conventional carbon supports are susceptible to corrosion at high potentials, leading to severe degradation of electrochemical performance. In this work, titanium carbonitride embedded in mesoporous carbon nanofibers (m-TiCN NFs) are reported as a promising alternative to address this issue. Benefiting from the interpenetrating conductive pathways inside the one-dimensional (1D) nanostructures and the embedded TiCN nanoparticles (NPs), m-TiCN NFs exhibit excellent stability at high potentials and interact strongly with Pt NPs. Subsequently, m-TiCN NFs-supported Pt NPs deliver remarkably enhanced oxygen reduction reaction (ORR) activity and durability, with negligible activity decay and less than 5% loss of electrochemical surface area(ECSA) after 50000 cycles. Moreover, the fuel cell assembled by this catalyst delivers a maximum power density of 1.22W cm-2 and merely 3% loss after 30000 cycles of accelerated durability tests under U.S. Department of Energy (DOE) protocols. The improved ORR activity and durability are attributed to the superior corrosion resistance of the m-TiCN NF support and the strong interaction between Pt and m-TiCN NFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.