Abstract

The origin of intrinsic quantum criticality in the heavy-fermion superconductor $\beta$-YbAlB$_4$ has been attributed to strong Yb valence fluctuations and its peculiar crystal structure. Here, we assess these contributions individually by studying the isostructural but fixed-valence compound $\beta$-LuAlB$_4$. Quantum oscillation measurements and DFT calculations reveal a Fermi surface markedly different from that of $\beta$-YbAlB$_4$, consistent with a `large' Fermi surface there. We also find an unexpected in-plane anisotropy of the electronic structure, in contrast to the isotropic Kondo hybridization in $\beta$-YbAlB$_4$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call