Abstract

We present a method to implement 3-dimensional polariton confinement with in-situ spectral tuning of the cavity mode. Our tunable microcavity is a hybrid system consisting of a bottom semiconductor distributed Bragg reflector (DBR) with a cavity containing quantum wells (QWs) grown on top and a dielectric concave DBR separated by a micrometer sized gap. Nanopositioners allow independent positioning of the two mirrors and the cavity mode energy can be tuned by controlling the distance between them. When close to resonance, we observe a characteristic anticrossing between the cavity modes and the QW exciton demonstrating strong coupling. For the smallest radii of curvature concave mirrors of 5.6 μm and 7.5 μm, real-space polariton imaging reveals submicron polariton confinement due to the hemispherical cavity geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.