Abstract

The Zinc oxide (ZnO) microcrystal is formed out of irradiated powder sample by a continuous-wave 532-nm laser with a high power of about 200 mW, and the microcrystal formation process is monitored by in situ Raman spectroscopy simultaneously. Scanning electron microscope image shows that multi-shaped ZnO microcrystal, including nano-rods and nano-flakes, is obtained near the brim of laser irradiated spot. The photoluminescence spectra of ZnO microcrystal are studied at both room temperature and low temperature of 10 K. With the ZnO microcrystal, we obtain that the peak intensity of near band-edge emission is at least 400 times stronger than that of deep-level emission at room temperature, and that up to fifth-order phonon replicas of free exciton emission are easily distinguished in the 10 K photoluminescence spectra. Both of them indicate that the ZnO microcrystal formed by intense laser irradiation has a very good crystalline structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.