Abstract

We report strong electron-phonon coupling in magic-angle twisted bilayer graphene (MA-TBG) obtained from atomistic description of the system including more than 10000 atoms in the moire supercell. Electronic structure, phonon spectrum, and electron-phonon coupling strength lambda are obtained before and after atomic-position relaxation both in and out of plane. Obtained lambda is very large for MA-TBG, with lambda > 1 near the half-filling energies of the flat bands, while it is small (lambda ~ 0.1) for monolayer and unrotated bilayer graphene. Significant electron-hole asymmetry occurs in the electronic structure after atomic-structure relaxation, so lambda is much stronger with hole doping than electron doping. Obtained electron-phonon coupling is nearly isotropic and depends very weakly on electronic band and momentum, indicating that electron-phonon coupling prefers single-gap s-wave superconductivity. Relevant phonon energies are much larger than electron energy scale, going far beyond adiabatic limit. Our results provide a fundamental understanding of the electron-phonon interaction in MA-TBG, highlighting that it can contribute to rich physics of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.