Abstract

The strong-coupling version of the BCS theory for superconductors is used to derive microscopic models for all types of small Josephson junctions—charge qubit, flux qubit and phase qubit. Applied to Josephson qubits it yields a more complicated structure of the lowest-lying energy levels than that obtained from phenomenological models based on quantization of the Kirchhoff equations. In particular, highly degenerate levels emerge, which act as probability sinks for the qubit. The alternative formulae concerning spectra of superconducting qubits are presented and compared with the experimental data. In contrast to the existing theories those formulae contain microscopic parameters of the model. In particular, for the first time, the density of Cooper pairs at zero temperature is estimated for an Al-based flux qubit. Finally, the question whether small Josephson junctions can be treated as macroscopic quantum systems is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.