Abstract

Structural and dynamical heterogeneities in metallic glasses, while intensely studied, remain an enigma. For instance, whether and how the dynamical and structural heterogeneities are correlated is still an outstanding question. Meanwhile, the nature of the impact of medium-range order (MRO) on the dynamical heterogeneity remains elusive. In this paper, we analyzed the structural and dynamical heterogeneities in both as-quenched and relaxed Cu64.5Zr35.5 metallic glasses based on the atomistic trajectories collected from molecular dynamics simulations. We found that the majority of the mobile atoms are not involved in icosahedral clusters or Bergman superclusters, indicating that dynamical heterogeneities are strongly correlated with structural heterogeneities. The Bergman-type MRO has an even stronger correlation with the dynamical heterogeneity than the icosahedral short range order. Moreover, we found that the localized soft vibration modes below 1.0 THz are mostly concentrated on the mobile atoms. These results suggest that the vibrational properties can be conveniently utilized to predict the atomic mobility in metallic glasses, which can bridge the studies of dynamical heterogeneity by experiments and simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call