Abstract

Using directional antennae in forming a wireless sensor network has many advantages over omnidirectional, including improved energy efficiency, reduced interference, increased security, and improved routing efficiency. We propose using double (Yagi) directional antennae in 3D space: for a given spherical angle such antennae transmit from their apex simultaneously directionally along two diametrically opposing cones in 3D. We study the resulting network formed by such directional sensors. We design a new algorithm to address strong connectivity of the resulting network and compare its hop-stretch factor with the three-dimensional omnidirectional model. We also obtain a lower bound on the minimum range required to ensure strong connectivity for sensors with double antennae. Further, we present simulation results comparing the diameter of a traditional sensor network using omnidirectional and one using directional antennae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.