Abstract

AbstractBiological load‐bearing tissues are strong, tough, and recoverable under periodic mechanical loads. However, such features have rarely been achieved simultaneously in the same synthetic hydrogels. Here, we use a force‐coupled enzymatic reaction to tune a strong covalent peptide linkage to a reversible bond. Based on this concept we engineered double network hydrogels that combine high mechanical strength and reversible mechanical recovery in the same hydrogels. Specifically, we found that a peptide ligase, sortase A, can promote the proteolysis of peptides under force. The peptide bond can be re‐ligated by the same enzyme in the absence of force. This allows the sacrificial network in the double‐network hydrogels to be ruptured and rebuilt reversibly. Our results demonstrate a general approach for precisely controlling the mechanical and dynamic properties of hydrogels at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.