Abstract

Biological load-bearing tissues are strong, tough, and recoverable under periodic mechanical loads. However, such features have rarely been achieved simultaneously in the same synthetic hydrogels. Here, we use a force-coupled enzymatic reaction to tune a strong covalent peptide linkage to a reversible bond. Based on this concept we engineered double network hydrogels that combine high mechanical strength and reversible mechanical recovery in the same hydrogels. Specifically, we found that a peptide ligase, sortase A, can promote the proteolysis of peptides under force. The peptide bond can be re-ligated by the same enzyme in the absence of force. This allows the sacrificial network in the double-network hydrogels to be ruptured and rebuilt reversibly. Our results demonstrate a general approach for precisely controlling the mechanical and dynamic properties of hydrogels at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.