Abstract
Diabetes induced a serious of complications including diabetic retinopathy. Our study aimed to investigate the role of Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in diabetic retinopathy. A mice model of diabetic retinopathy was established, and expression of SDF-1 and CXCR4 in retina was examined by Real-time quantitative PCR (qRT-PCR). Cells of human retinal pigment epithelial cell line ARPE-19 were treated with CXCR4 siRNAs and expression vector, and cell viability was detected by MTT assay. We found that expression of SDF-1 and CXCR4 in retina was significantly downregulated in mice with diabetic retinopathy than in normal healthy mice. High glucose treatment downregulated the expression of SDF-1 and CXCR4 in ARPE-19 cells at both mRNA and protein levels. Transfection with CXCR4 siRNAs decreased, while transfection with CXCR4 expression vector increased cell viability under high glucose treatment. We concluded that SDF-1/CXCR4 pathway improved diabetic retinopathy possibly by increasing cell viability. Abbreviations: SDF-1: Stromal cell-derived factor 1; CXCL12: C-X-C motif chemokine 12; qRT-PCR: Real-time quantitative PCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.