Abstract
A novel approach to the electrochemical determination of heavy metals in tap water using anodic stripping voltammetry was developed using screen-printed electrodes modified with gold films. After optimisation of the experimental conditions, the screen-printed electrodes modified with gold films displayed excellent linear behaviour in the examined concentration range from 2 to 16 µg L-1 mercury and lead in 50 mM HCl with a detection limit of 1.5 µg L-1 and 0.5 µg L-1 for mercury and lead, respectively. In order to decrease the working range down to less than 1 µg L-1, a preconcentration step based on the use of magnetic particles modified with thiols was introduced into the protocol. Applying optimum binding conditions, the assay using screen-printed electrodes modified with gold films displayed excellent linear behaviour in the concentration range 0.1 to 0.8 µg L-1 in 50 mM HCl. The detection limit after a 120 s deposition time for mercury and lead were 0.08 µg L-1 and 0.02 µg L-1, respectively. The method has been applied to the determination of mercury and lead traces in tap water
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.