Abstract

Wheat stripe rust poses a marked threat to global wheat production. Accurate and effective disease severity assessments are crucial for disease resistance breeding and timely management of field diseases. In this study, we propose a practical solution using mobile-based deep learning and model-assisted labeling. StripeRust-Pocket, a user-friendly mobile application developed based on deep learning models, accurately quantifies disease severity in wheat stripe rust leaf images, even under complex backgrounds. Additionally, StripeRust-Pocket facilitates image acquisition, result storage, organization, and sharing. The underlying model employed by StripeRust-Pocket, called StripeRustNet, is a balanced lightweight 2-stage model. The first stage utilizes MobileNetV2-DeepLabV3+ for leaf segmentation, followed by ResNet50-DeepLabV3+ in the second stage for lesion segmentation. Disease severity is estimated by calculating the ratio of the lesion pixel area to the leaf pixel area. StripeRustNet achieves 98.65% mean intersection over union (MIoU) for leaf segmentation and 86.08% MIoU for lesion segmentation. Validation using an additional 100 field images demonstrated a mean correlation of over 0.964 with 3 expert visual scores. To address the challenges in manual labeling, we introduce a 2-stage labeling pipeline that combines model-assisted labeling, manual correction, and spatial complementarity. We apply this pipeline to our self-collected dataset, reducing the annotation time from 20 min to 3 min per image. Our method provides an efficient and practical solution for wheat stripe rust severity assessments, empowering wheat breeders and pathologists to implement timely disease management. It also demonstrates how to address the "last mile" challenge of applying computer vision technology to plant phenomics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.