Abstract
Objective:To explore the effect of fully automatic image segmentation of adenoid and nasopharyngeal airway by deep learning model based on U-Net network. Methods:From March 2021 to March 2022, 240 children underwent cone beam computed tomography(CBCT) in the Department of Otolaryngology, Head and Neck Surgery, General Hospital of Shenzhen University. 52 of them were selected for manual labeling of nasopharynx airway and adenoid, and then were trained and verified by the deep learning model. After applying the model to the remaining data, compare the differences between conventional two-dimensional indicators and deep learning three-dimensional indicators in 240 datasets. Results:For the 52 cases of modeling and training data sets, there was no significant difference between the prediction results of deep learning and the manual labeling results of doctors(P>0.05). The model evaluation index of nasopharyngeal airway volume: Mean Intersection over Union(MIOU) s (86.32±0.54)%; Dice Similarity Coefficient(DSC): (92.91±0.23)%; Accuracy: (95.92±0.25)%; Precision: (91.93±0.14)%; and the model evaluation index of Adenoid volume: MIOU: (86.28±0.61)%; DSC: (92.88±0.17)%; Accuracy: (95.90±0.29)%; Precision: (92.30±0.23)%. There was a positive correlation between the two-dimensional index A/N and the three-dimensional index AV/(AV+NAV) in 240 children of different age groups(P<0.05), and the correlation coefficient of 9-13 years old was 0.74. Conclusion:The deep learning model based on U-Net network has a good effect on the automatic image segmentation of adenoid and nasopharynx airway, and has high application value. The model has a certain generalization ability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology, head, and neck surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.