Abstract

We have used the Arecibo Telescope to carry out one of the deepest-ever integrations in radio astronomy, targeting the redshifted conjugate satellite OH 18cm lines at z≈0.247 towards PKS 1413+135. The satellite OH 1720 and 1612MHz lines are, respectively, in emission and absorption, with exactly the same line shapes due to population inversion in the OH ground state levels. Since the 1720 and 1612MHz line rest frequencies have different dependences on the fine structure constant α and the proton-electron mass ratio μ, a comparison between their measured redshifts allows one to probe changes in α and μ with cosmological time. In the case of conjugate satellite OH 18cm lines, the predicted perfect cancellation of the sum of the line optical depths provides a strong test for the presence of systematic effects that might limit their use in probing fundamental constant evolution. A nonparametric analysis of our new Arecibo data yields [ΔX/X]=(+0.97±1.52)×10^{-6}, where X≡μα^{2}. Combining this with our earlier results from the Arecibo Telescope and the Westerbork Synthesis Radio Telescope, we obtain [ΔX/X]=(-1.0±1.3)×10^{-6}, consistent with no changes in the quantity μα^{2} over the last 2.9Gyr. This is the most stringent present constraint on fractional changes in μα^{2} from astronomical spectroscopy, and with no evidence for systematic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.