Abstract

It is shown how the algebraic geometry of the moduli space of Riemann surfaces entirely determines the partition function of Polyakov's string theory. This is done by using elements of Arakelov's intersection theory applied to determinants of families of differential operators parametrized by moduli space. As a result we write the partition function in terms of exponentials of Arakelov's Green functions and Faltings' invariant on Riemann surfaces. Generalizing to arithmetic surfaces, i.e. surfaces which are associated to an algebraic number fieldK, we establish a connection between string theory and the infinite primes ofK. As a result we conjecture that the usual partition function is a special case of a new partition function on the moduli space defined overK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.