Abstract
Tropomyosin (TM) plays a central role in calcium mediated striated muscle contraction. There are three muscle TM isoforms: alpha-TM, beta-TM, and gamma-TM. alpha-TM is the predominant cardiac and skeletal muscle isoform. beta-TM is expressed in skeletal and embryonic cardiac muscle. gamma-TM is expressed in slow-twitch musculature, but is not found in the heart. Our previous work established that muscle TM isoforms confer different physiological properties to the cardiac sarcomere. To determine whether one of these isoforms is dominant in dictating its functional properties, we generated single and double transgenic mice expressing beta-TM and/or gamma-TM in the heart, in addition to the endogenously expressed alpha-TM. Results show significant TM protein expression in the betagamma-DTG hearts: alpha-TM: 36%, beta-TM: 32%, and gamma-TM: 32%. These betagamma-DTG mice do not develop pathological abnormalities; however, they exhibit a hyper contractile phenotype with decreased myofilament calcium sensitivity, similar to gamma-TM transgenic hearts. Biophysical studies indicate that gamma-TM is more rigid than either alpha-TM or beta-TM. This is the first report showing that with approximately equivalent levels of expression within the same tissue, there is a functional dominance of gamma-TM over alpha-TM or beta-TM in regulating physiological performance of the striated muscle sarcomere. In addition to the effect expression of gamma-TM has on Ca(2+) activation of the cardiac myofilaments, our data demonstrates an effect on cooperative activation of the thin filament by strongly bound rigor cross-bridges. This is significant in relation to current ideas on the control mechanism of the steep relation between Ca(2+) and tension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.