Abstract
The ryanodine receptors (RYR) are a family of calcium release channels that are expressed in a variety of tissues. Three genes, i. e. ryr1, ryr2, and ryr3, have been identified coding for a skeletal muscle, cardiac muscle, and brain isoform, respectively. Although, the skeletal muscle isoform (RYR1) was shown to be expressed predominantly in skeletal muscle, expression was also detected in the esophagus and brain. To analyze the transcriptional regulation of the RYR1 gene, we have constructed chimeric genes composed of the upstream region of the RYR1 gene and the bacterial chloramphenicol acetyltransferase (CAT) gene and transiently transfected them into primary cultured porcine myoblasts, myotubes, and fibroblasts. A 443-base pair region upstream from the transcription start site was sufficient to direct CAT activity without tissue specificity. Deletion of a 61-base pair fragment from the 5'-end of the promoter resulted in a marked reduction of CAT activity in all three tissue types. A similar reduction of expression was observed when using a construct with the first intron in antisense orientation upstream from the promoter. In contrast, the first intron in sense orientation enhanced expression only in myotubes, while expression was repressed in fibroblasts and myoblasts. Gel retardation analyses showed DNA binding activity in nuclear extracts for two upstream DNA sequence elements. Our data suggest that (i) RYR1 gene expression is regulated by at least two novel transcription factors (designated RYREF-1 and RYREF-2), and (ii) tissue specificity results from a transcriptional repression in nonmuscle cells mediated by the first intron.
Highlights
The skeletal muscle ryanodine receptor (RYR1) is a member of a family of calcium release channels that are expressed in different tissues
We describe the isolation and transcriptional analysis of the porcine skeletal muscle ryanodine receptor assay
The RYR1 promoter does not contain a TATA box, which is in agreement with the human and rabbit RYR1 gene promoters
Summary
Coding sequences are shown in upper-case letters, and introns in lower-case letters. The conserved GT/AG exon-intron junctions are shown in boldface. Amino acid residues are indicated with respect to each boundary. Note that lettering of amino acids is truncated. Numbering starts with position ϩ1 at the adenosine of the initiator methionine
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.