Abstract

Triboelectric nanogenerators (TENG) can generate strong electrical signals even with low frequencies and weak forces, thus research has been conducted to use them as wearable, body-attachable, and body-embeddable devices using biomechanical energies. For this reason, the TENG components, such as dielectric materials and electrodes, should be stretchable. A stretchable and biocompatible single electrode TENG based on plasticized polyvinyl chloride (PVC) gel with a graphene electrode is fabricated. PVC gel is a suitable stretchable TENG dielectric material owing to its high stretchability, dielectric constant, and tribo-negative properties, and graphene is a highly conductive electrode. Graphene and PVC gel-based stretchable and biocompatible TENGs display excellent electrical outputs (48 V, 2.5 μA, and 0.49 W/m2). The electrical resistance range of the electrode which does not affect the TENG output performance, and a stretching-insensitive TENG with approximately 50% stretching rate is successfully demonstrated through this study. In addition, both PVC gel and graphene are biocompatible. These stretching-insensitive and biocompatible TENGs may be used as a self-powered touch sensor that can be integrated into the human body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call