Abstract
For the Compact LInear Collider (CLIC) project at CERN, maintaining low emittance beams, as they are transported along the two independent 10-20 km long main linacs, is crucial. The beam trajectory therefore has to be very well aligned to the magnetic centre of the quadrupole magnets. A series of microwave cavity beam position monitors (BPM) is foreseen to detect the position of the beam along the main linacs to precisely monitor the beam trajectory in the circular beam pipe of only 8 mm diameter. The PACMAN project aims to demonstrate the pre-alignment of the magnetic field of a main CLIC quadrupole with the electro-magnetic centre of a 15 GHz RF-BPM to the required sub-micron accuracy. This paper focuses on stretched-wire measurements of a CLIC Test Facility (CTF) cavity BPM, to locate its electrical centre. Details of two measurement methods are discussed: RF signal excitation of the wire and analysis of RF signal transfer through the slot-coupled waveguides of the cavity, using the stretched wire as a passive target. This contribution will present the theory behind these measurements, their electromagnetic analysis and first, preliminary experimental results.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have