Abstract

AbstractFlexible, compliant permeation barrier layers are critically needed in the optics/optoelectronics industry to protect deformable, polymer‐based optical elements, such as those found in variable focus lenses. To address these needs, a transparent and deformable polymeric permeation barrier coating consisting of poly(1H,1H,6H,6H‐perfluorohexyl diacrylate) (pPFHDA) is prepared by initiated chemical vapor deposition. pPFHDA is a highly crosslinked fluoropolymer, which is deposited onto temperature‐sensitive elastomeric membranes at ambient temperature with high uniformity and conformality. This is believed to be the first demonstration of vapor deposition of the PFHDA monomer. Coatings with thicknesses nominally ranging from 200 to 750 nm are prepared and shown to be impermeable to high‐index optical fluid (polyphenyl thioether) over 2 months at 70 °C, which translates to more than 4 year lifespan at room temperature, even after being subjected to 0.26% biaxial strain. Moreover, due to its amorphous nature, the pPFHDA is transparent from wavelengths of 300–1690 nm and also thermally stable to temperatures of 300 °C. These properties should make pPFHDA coating a particularly compelling candidate for flexible optical/optoelectronic devices requiring transparent and compliant barrier layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.