Abstract

Wearable strain sensors have been attracting special attention in the detection of human posture and activity, as well as for the assessment of physical rehabilitation and kinematics. However, it is a challenge to fabricate stretchable and comfortable-to-wear permeable strain sensors that can provide highly accurate and continuous motion recording while exerting minimal constraints and maintaining low interference with the body. Herein, covalently grafting nanofibrous polyaniline (PANI) onto stretchable elastomer nanomeshes is reported to obtain a freestanding ultrathin (varying from 300 to 10 000nm) strain sensor that has high gas permeability (10-33mg h-1 ). The sensor demonstrates a low weight and can be directly laminated onto the dynamic human skin for long periods of time. The sensor, which produces an intimate connection with solid or living objects, has a stable performance with excellent sustainability, linearity, durability, and low hysteresis. It exibits excellent performance for continuous interrogation of complex movements, mimicking muscle activities, and resembling brain activity. This includes a very precise discrimination of bending and twisting stimuli at different angles (1-180°) and speeds (3-18rpm) and very low exertion of counter-interference. These results imply the utility of this appraoch for advanced developments of robotic e-skins or e-muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.