Abstract
Hypoxis hemerocallidea is a medicinal plant containing hypoxoside (a pharmacologically active phytosterol diglucoside). This study evaluated the elemental composition in leaves of H. hemerocallidea treated with cadmium (Cd) and aluminium (Al) using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). The impact of Cd and Al on photosynthetic pigments and performance, antioxidant activities and ultrastructure were also assessed. Corms of H. hemerocallidea were micropropagated, rooted and then exposed to varying concentrations of Cd, Al, and Cd + Al for six weeks. The SEM/EDX analysis indicated a two-fold increase in carbon content across all treated plants compared to the control. No/little Cd was detected in the leaves compared to a progressive increase in Al concentration with increasing Al treatment levels. This indicted that Al is more readily translocated to the shoots compared to Cd. Plants treated with Cd exhibited a significant decrease in total chlorophyll content accompanied by reduced photosynthetic performance and lower relative electron transport rates. Cd and Al exposure led to higher carotenoid, superoxide dismutase and malondialdehyde levels, indicating oxidative stress. Cd-treated plants displayed increased amylase activity and decreased carbohydrates content. Ultrastructural alterations occurred with exposure to Cd and Al, including abnormal swelling or disintegration of chloroplasts and thylakoid degeneration. An increase in starch grains and a decrease in plastoglobuli were also noted. In conclusion, this investigation provides evidence that both Cd and higher concentrations of Al exert detrimental effects on the ultrastructure, metabolism and photosynthetic performance of H. hemerocallidea, contributing to reduced growth and biological activity when stressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.