Abstract

Changes in photosynthetic capacity and efficiency, and in carotenoid composition have been examined during leaf ontogeny in the pasture legume white clover, Trifolium repens (L.). Leaf chlorophyll, measured as μg –1 FW, was used as an indicator of leaf maturity, with maximum levels of the pigment denoting the mature-green phase of leaf development, and an observed decrease in chlorophyll content accompanying leaf senescence. For chlorophyll a and b, a constant ratio ( a/b) between the two pigments was observed in mature-green leaves, and in the early stages of senescence while the ratio increased during the later stages of leaf senescence. Measurement of the net photosynthetic CO 2 assimilation rate ( P N) as μmol m –2 s –1 revealed a decrease in the photosynthetic rate that correlated with the decrease in total chlorophyll content. Measurement of chlorophyll fluorescence in vivo revealed that the optimal quantum efficiency of PSII (Fv/Fm) did not decline significantly, but the effective quantum efficiency of PSII in the light ((Fm′ – Ft)/Fm′) did decrease significantly, with a concomitant increase in non-photochemical quenching (NPQ). In terms of changes in the accessory pigments during senescence, the total pool of carotenoids decreased when expressed per unit leaf area, but not as rapidly as total chlorophyll such that the chlorophyll/carotenoid ratio decreased. The relative abundance of the carotenoids comprising the xanthophyll cycle, zeaxanthin (Z), violaxanthin (V) and antheraxanthin (A) altered during leaf ontogeny. In mature-green leaves, violaxanthin was the more abundant pigment, but as leaf senescence progressed, zeaxanthin became the most abundant pigment, and the ratio of (Z + A)/(Z + A + V) increased. These results are discussed in terms of the role of the xanthophylls cycle in the protection of PSII during leaf senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.