Abstract
The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known as Misterios Negros) were also thought by some to have formed simultaneously on the eastern flank of Santa Barbara Volcano. Following a multidisciplinary approach, we combined geological mapping, paleomagnetic, petrographic, mineral and whole-rock geochemical and structural analyses to study this eruption. The paleomagnetic dating method compared geomagnetic vectors (directions and intensities) recorded by both the AD 1761 lava flow and Misterios Negros domes and revealed that the two events were indeed coeval. Based on new data and interpretation of historical records, we have accordingly reconstructed the AD 1761 eruptive dynamics and distinguished three phases: (1) a precursory phase characterized by decreased degassing in the fumarolic field of Pico Alto Volcano and a gradual increase of seismic activity, which marked the intrusion of trachybasalt magma; (2) a first eruptive phase that started with phreatic explosions on the eastern flank of Santa Barbara Volcano, followed by the inconspicuous effusion of comenditic trachyte (66 wt% SiO2), forming a WNW-ESE-oriented chain of lava domes; and (3) a second eruptive phase on the central part of the fissure zone, where a Hawaiian to Strombolian-style eruption formed small scoria cones (E-W to ENE-WSW-oriented) and a trachybasalt lava flow (50 wt% SiO2) which buried 27 houses in Biscoitos village. Petrological analyses show that the two batches of magma were emitted independently without evidence of interaction. We envisage that the dome-forming event was triggered by local stress changes induced by intrusion of the trachybasalt dyke along the fissure zone, which created tensile stress conditions that promoted ascent of comenditic trachyte magma stored beneath Santa Barbara Volcano.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have