Abstract

Plasma cortisol levels and the number (Nmax) and affinity (Kd) of specific hepatic cortisol-binding sites were determined in rainbow trout subjected to chronic confinement stress for 14 days. Confinement significantly elevated plasma cortisol levels to 47.3 ± 13.5 ng ml(-1) within 24h and although levels declined to 8.0 ± 3.0 ng ml(-1) after 14 days, they were significantly higher throughout than levels in unstressed control fish (< 2.0 ng ml(-1)). There was a 60% reduction in cytosolic Nmax in stressed fish during the first 24h of confinement (35.8 ± 7.9 cf. 129.0 ± 15.2 fmol mg(-1) protein), a decline which was sustained at 7 days after the onset of stress but, although numbers of binding sites in the liver of stressed fish were still lower than in unstressed fish, the difference was no longer significant after 14 days of confinement. There was an accompanying significant rise in the Kd of cortisol binding in stressed fish during confinement, from 4.0 ± 0.6 nM at time 0 to 8.4 ± 0.8 nM after 24 h confinement. This increment in Kd was sustained at a level significantly higher than in control fish throughout the 14 day confinement period, despite marked reductions in cortisol levels and increases in Nmax in stressed fish. Throughout the study, specific binding of cortisol could not be consistently detected in high-salt nuclear extracts from stressed or unstressed fish, suggesting either that high-affinity binding sites for cortisol were absent from these preparations, that receptors were present but unable to interact with ligand because they were occupied, or that receptors were present but not being extracted. These possibilities were investigated using a range of extraction procedures, by varying the temperature of incubation, by employing dexamethasone as ligand and by examining binding in purified, intact, nuclei. Estradiol was employed as a methodological control throughout and substantial amounts of specific estradiol binding were detected in all compartments and preparations. Specific cortisol-binding sites were detected in intact nuclei of both stressed and unstressed fish, at levels an order of magnitude lower than estradiol binding in the same preparations. These data demonstrate that activation of the pituitary-interrenal axis leads to significant changes in the nature of target-tissue binding of cortisol in rainbow trout, and reveal a clear difference in the subcellular distribution of binding-sites for estradiol and cortisol, which reflects the situation in mammalian tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call