Abstract

This article aims to propose an approach to the stress-based topology optimization of continuous elastic bi-dimensional structures subjected to design-dependent self-weight loads using the Bi-directional Evolutionary Structural Optimization (BESO) method. Topology optimization is developed through the minimization of P-norm von Mises stress while satisfying a volume constraint. To implement the algorithm, a consistent sensitivity analysis including design-dependent loads has been developed by the adjoint method. A series of tests has been performed to explore and validate the method through three numerical examples: an L-bracket; a doubly supported beam with one pre-existing crack notch; and a cantilever beam. Comparison between traditional compliance minimization and stress minimization analyses, including design-dependent self-weight loads, shows that the method is an effective way to reduce the maximum stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.