Abstract

We report on unique measurements of multiple microsecond-duration arrest periods during the propagation of high speed (>1 km s−1) cracks in micromachined single-crystal silicon specimens. These events were recorded electronically and in physical features remaining on the fracture plane. Using time-of-flight calculations, we have determined that these arrest patterns are due to the interference of boundary-reflected stress waves with the propagating crack tip. The specimen size, the measurement method, and the low acoustic attenuation in cyrstalline silicon facilitated the observation of these phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call