Abstract
This investigation was designed to compare the differential stress tolerance in young thalli of two similar intertidal red seaweeds, Grateloupia turuturu Yamada and Palmaria palmata Kuntze, and to identify whether the invasive alga G. turuturu was more stress tolerant than P. palmata to cope with adverse environmental conditions. To do so, we measured the production of reactive oxygen caused by methyl viologen (MV) by assessing the oxidation of dichlorohydrofluorescein (DCFH) to dichlorofluorescein (DCF), the activities of reactive oxygen scavenging enzymes and the changes of the optimal fluorescence quantum yield (Fv/Fm) when the thalli of the two species were exposed to oxidative stresses caused by the addition of MV, H 2O 2, 3(3, 4-dichlorophenyl)-1,1-dimethyl urea (DCMU), heavy metal, changes of salinities, heat and freezing. Results demonstrated that the activities of superoxide dismutase (SOD) and peroxidase (POD) in G. turuturu were much higher than in P. palmata. Fv/Fm in G. turuturu was less sensitive than that in P. palmata to MV, H 2O 2, DCMU, heavy metal, salinity and heat stress, indicating that G. turuturu could be better acclimatized to changing environments and thus had a higher threshold for oxidative stress than P. palmata. G. turuturu was shown to be more sensitive to freezing treatment (− 20 °C), which explained why the appearance of G. turuturu was rarely reported in colder water environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have