Abstract
The singular behaviour of quantum fields in Minkowski space can often be bounded by polynomials of the Hamiltonian H. These so-called H-bounds and related techniques allow us to handle pointwise quantum fields and their operator product expansions in a mathematically rigorous way. A drawback of this approach, however, is that the Hamiltonian is a global rather than a local operator and, moreover, it is not defined in generic curved spacetimes. In order to overcome this drawback we investigate the possibility of replacing H by a component of the stress tensor, essentially an energy density, to obtain analogous bounds. For definiteness we consider a massive, minimally coupled free Hermitean scalar field. Using novel results on distributions of positive type we show that in any globally hyperbolic Lorentzian manifold M for any f,F∈C0∞(M)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f,F\\in C_0^{\\infty }(M)$$\\end{document} with F≡1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F\\equiv 1$$\\end{document} on supp(f)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{supp}(f)$$\\end{document} and any timelike smooth vector field tμ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t^{\\mu }$$\\end{document} we can find constants c,C>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c,C>0$$\\end{document} such that ω(ϕ(f)∗ϕ(f))≤C(ω(Tμνren(tμtνF2))+c)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\omega (\\phi (f)^*\\phi (f))\\le C(\\omega (T^{\ extrm{ren}}_{\\mu \ u }(t^{\\mu }t^{\ u }F^2))+c)$$\\end{document} for all (not necessarily quasi-free) Hadamard states ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\omega $$\\end{document}. This is essentially a new type of quantum energy inequality that entails a stress tensor bound on the smeared quantum field. In 1+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1+1$$\\end{document} dimensions we also establish a bound on the pointwise quantum field, namely |ω(ϕ(x))|≤C(ω(Tμνren(tμtνF2))+c)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|\\omega (\\phi (x))|\\le C(\\omega (T^{\ extrm{ren}}_{\\mu \ u }(t^{\\mu }t^{\ u }F^2))+c)$$\\end{document}, where F≡1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F\\equiv 1$$\\end{document} near x.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have