Abstract

Deformation of metallic materials results in dislocations occurrence and accumulation, with establishment of their definite distribution (dislocation substructure). The type of dislocation substructure (DSS) defines largely resistance to deformation and fracture of materials. Quantitatively the interrelation of DSSs and resistance to deformation are studied on a limited number of alloys. Foreign literature lacks studies referring to those issues. The given paper investigates the stress-strain dependences in Cu-Mn polycrystalline solid solutions. Mn concentration in the alloys varied within the range of 10…25 at.%. Polycrystals with 10 and 240 μm mean grain size were investigated. Deformation was applied by means of tension at the velocity of 2.10-2 s-1 and the temperature of 293 K. Using transmission electron microscope at the accelerating voltage of 125 kV, microstructure of the samples was investigated when they were deformed up to various deformation degrees. The types of DSSs were defined. The connection of the deformation stage under tension with the formed types of DSS was discussed. The sequence of transition of DSSs during the process of alloys deformation was defined. Appearance of the new stage of deformation hardening is attributed to the occurrence of the new type of substructure. The occurring “new” DSS develops during the deformation process, while “the old” DSS gradually disappears. Each of the stage of plastic deformation generally has two types of DSSs. The connection of the deformation stage and the strain hardening coefficient with the DSS was defined and it was shown to possess the definite dislocation density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.