Abstract

If faulting is treated as a stress-controlled phenomenon, the generation of a single fault set, or two sets in conjugate arrangement are inevitably predicted implying plane strain. Alternatively, considering faulting as a strain-controlled process, multiple-set patterns can be predicted. The analysis of multiple-set patterns requires identifying the type of fault pattern from four possibilities: Coulomb, isolated, orthorhombic and complex fault patterns. There are techniques that permit a unique solution of strain tensor for Coulomb and orthorhombic fault patterns. For isolated fault patterns, the principal paleostress directions could be used to approximate the principal strain directions. In this case, we need to assume a homogeneous stress field, independence between faults, and parallelism between shear stress and slip vector on the sliding plane. For complex fault patterns, it is not possible to uniquely determine the total strain tensor without knowledge of all the slip planes. Furthermore, inverting fault-slip data to determine the stress tensor is not correct because the assumptions of the inversion methods are not satisfied. Only a rough approximation is possible assuming that strain produced by major faults represents the total strain tensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call