Abstract

  Multiple fault populations with different orientations and complex fault patterns can be observed during oblique rifting, conditions which result from a complex rift kinematics which combines dip-slip and strike-slip motion. Although analysis of different natural cases and analog or numerical modeling have shed light on the relations between rift obliquity and the related fault architecture, many aspects of the process remain poorly understood. One of these aspects is related to the existence of pre-existing fabrics in the upper crust, which may further complicate the fault pattern by forcing the development of faults with atypical geometries and orientation. Here, we performed enhanced-gravity analog models of oblique narrow rifting to characterize the evolution and architecture of rift-related faults developing in a brittle upper crust characterized by inherited fabrics. The models reproduce a rift obliquity of 30° (angle between the rift trend and the orthogonal to the direction of extension), kept constant in all the experiments, and pre-existing vertical fabrics with variable orientation (from 0°, i.e. orthogonal to extension, to 90°, i.e. extension-parallel). Modeling results suggest that inherited fabrics have an important influence on rift-related faulting, with a significant correlation between the intensity of reactivation and their trend with respect to the extension direction. When the pre-existing fabrics trend perpendicular to the extension direction (obliquity 0°), they are strongly reactivated, localizing deformation and promoting the rapid development of faults and grabens perpendicular to the extensional direction. When the pre-existing fabrics trend at moderate obliquity (15°-45°), they are still reactivated and localize deformation causing the development of atypical fault trends and patterns. The degree of reactivation tends to gradually decrease with increasing obliquity; similarly, the influence of pre-existing structures decreases with progressive extension, and the fault pattern and evolution are progressively dominated by extension kinematics and crustal thinning. When the pre-existing fabrics trend at high obliquity (≥ 60°), they have almost no influence on the fault geometry and architecture. This study has significant implications for explaining the fault geometry and evolution of some natural rift basins worldwide, such as basins of the East African Rift system, the North Sea Rift, and some offshore rift basins in eastern China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call