Abstract

We report the Si-doping-induced relaxation of residual stress in GaN epitaxial layers grown on (0001) sapphire substrate by the metalorganic vapor phase epitaxy technique. Micro-Raman spectroscopy is used to assess stress situation in the films with systematically modulated doping concentration from 4.0×1017 up to 1.6×1019 cm−3. As the Si-doping concentration increases, a monotonic decrease of the E2 phonon frequency is observed, which signifies gradual relaxation of the stress in the film. The layers are fully relaxed when electron concentration exceeds 1.6×1019 cm−3. The linear coefficient of shift in Raman frequency (ω) induced by the in-plane biaxial compressive stress (σ∥) is estimated to be Δω/Δσ∥=7.7 cm−1/GPa. We suggest that Si doping increases density of misfit dislocation, judging from linewidth of x-ray rocking curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call