Abstract

From the experimental analysis of the photocuring process in terms of reaction kinetics as well as modulus and shrinkage build-up, the residual stresses arising during the photopolymerization of functionally graded composite coatings based on an acrylate matrix and Fe3O4@SiO2 core@shell nanoparticles are evaluated through a Finite Element Modeling approach. Owing to the monotonous variation of volume fraction of the constituent phases that influences the local conversion of the polymeric matrix, these coatings are able to decrease the residual stresseS at the coating/substrate interface by as much as approximate to 25% compared to those encountered in composites with homogeneous compositions, and by as much as approximate to 40% compared to those arising in the pure polymer. The influence of substrate stiffness, nanoparticle stiffness and conversion degree of the polymer matrix was also analyzed, providing further information for the optimization of the stress reduction mechanism in graded nanocomposite coatings. (C) 2015 Elsevier B.V. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.