Abstract
Quantifying stress levels of an individual based on a mathematical analysis of real-time physiological data measurements is challenging. This study suggests a stochastic fuzzy analysis method to evaluate the short time series of R-R intervals (time intervals between consecutive heart beats) for a quantification of the stress level. The 5-min-long series of R-R intervals recorded under a given stress level are modeled by a stochastic fuzzy system. The stochastic model of heartbeat intervals is individual specific and corresponds to a particular stress level. Once the different heartbeat interval models are available for an individual, an analysis of the given R-R interval series generated under an unknown stress level is performed by a stochastic interpolation of the models. The stress estimation method has been implemented in a mobile telemedical application employing an e-health system for an efficient and cost-effective monitoring of patients while at home or at work. The experiments involve 50 individuals whose stress scores were assessed at different times of the day. The subjective rating scores showed a high correlation with the values predicted by the proposed analysis method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.